

Excellence in pasture management and feed budgeting is required for retaining New Zealand's competitive advantage in dairying.

W 3. PASTURE-BASED PRODUCTION SYSTEMS

Five farm production system definitions

As New Zealand pastoral farming is about profitably balancing feed supply and demand, five production systems have been described by DairyNZ primarily based on the amount of imported feed and/or off farm dry cow grazing. The definitions do not include grazing or feed for young stock.

These definitions are intended to improve the understanding and description of feed resources used on farms in relation to common performance indicators such as milksolids per ha. They are not intended as a ranking system or any indication of DairyNZ's preferences.

System 1 – All grass self-contained, 100% home grown feed with all adult stock on the dairy platform

No feed is imported. No supplement fed to the herd except supplement harvested off the effective milking area and dry cows are not grazed off the effective milking area.

System 2 – 90-99% of total feed is home grown feed.

1-10% of feed is imported either as supplement or grazing off for wintering dry cows.

System 3 – 80-89% of total feed is home grown feed

11-20% of total feed imported to extend lactation (typically autumn feed) and for wintering dry cows

System 4 – 70-79% of total feed is home grown feed.

21-30% of feed imported and used at both ends of lactation and for wintering dry cows

System 5 – 50 to 69% of total feed is home grown feed.

More than 31% of feed imported and used throughout lactation. Feed imported could be greater than 50%.

Principles for profitable and sustainable pasture-based dairy systems

PRINCIPLE 1	Dairy systems that are robust to risk and in particular milk price volatility, have low unit costs
PRINCIPLE 2	Optimising 'pasture grown' per hectare is a key contributor to operating profit/ha
PRINCIPLE 3	There's a strong positive relationship between home grown pasture and crop eaten/ha (i.e., t DM/ha;) and operating profit/ha
PRINCIPLE 4	Match stocking rate (herd demand) as closely as possible with the supply of home grown feed so that pasture eaten/ha by the grazing herd is a high proportion of the annual pasture grown.
PRINCIPLE 5	Managing rotation length and grazing residual optimises pasture grown and harvested
PRINCIPLE 6	The optimum body condition score at calving is 5.0 for mature cows and 5.5 for 2 and 3-year old animals
PRINCIPLE 7	Supplementary feeds and crops should only be used when available pasture is less than herd demand
PRINCIPLE 8	Crops should only be used if the benefits outweigh the costs.
PRINCIPLE 9	The breeding worth system identifies the most profitable cow genetics for the system, irrespective of cow breed

The four pillars of a resilient farm system

Although there are many components to a successful farm system, DairyNZ believe that there are four pillars that define resilient farm systems, irrespective of region, rainfall, or farming philosophy.

Resources

- Pasture growth (kg DM/ha)
- High N use efficiency
- Supplementation

Animals

- High breeding worth
- High milksolids + fertility
- Easy care

People

- Sufficient time off
- Development opportunity
- Simple & repeatable systems

Business

- Profit focused
- Capital reserves
- Measurement & budgeting

Pasture first management: a seasonal approach

Managing pasture cover

- 1. APC start with the right pasture cover at PSC.
- 2. Allocate feed accurately.
- 3. Adjust area grazed per day as needed (Spring Rotation Planner) and monitor APC.

Tools include the Spring Rotation Planner, feed budgets, Spring Survival Guide.

Managing pasture quality

- Surplus management maintain residuals, quality and ensure survival of new tillers.
- 2. Stop supplement use.
- 3. Summer strategy prepared.

Tools include feed wedges, spring feeding check.

Visit dairynz.co.nz/feedtools dairynz.co.nz/spring

Set up for planned start of calving (PSC)

- 1. Make decisions around milking on or drying off.
- 2. Monitor soil nutrient levels.
- 3. Map out next season's feed budget.

Tools include pasture eaten calculator, supplement price calculator, annual feed budget, financial forecast.

Visit dairynz.co.nz/feedtools

Maintain pasture quality

- 1.Residual management avoid overgrazing.
- 2. Regrassing/renewal: getting it right.
- Review supply and demand decisons (milk, supplement, cull cow and nitrogen prices).

Tools include the summer management plan, supplement price calculator, autumn management tool, Forage Value Index (FVI).

Visit dairynz.co.nz/summer dairynz.co.nz/feedtools dairynz.co.nz/fvi

Pasture allocation

How to calculate pre-grazing cover

(Stocking rate x intake x rotation) + Optimum residual = Pre-grazing cover (_____ cows/ha x _____ kg DM/cow x ____days) + _____ kg DM/ha = _____ kg DM/ha e.g. (3.0 cows/ha x 17.5 kg DM/cow x 22 days) + 1500 kg DM/ha = 2650 kg DM/ha

Target grazing heights (covers or residuals) for ryegrass/clover pastures

Grazing covers are expressed as "clicks" on the Rising Plate Meter (RPM) or in kg DM/ ha based on the winter formula (clicks x 140 + 500) and are for ryegrass dominant pastures. One click = 0.5 cm compressed height.

Post grazing cover height= 1500 kg DM/ha =7.0 clicks on RPM.

Focus on achieving target post-grazing residuals of 1500-1600kg DM/ha or 7-8 clicks on a rising plate meter during spring and early summer.

This optimises pasture utilisation and subsequent pasture growth and quality. For more information **www.dairynz.co.nz/feed/pasture-management.**

How to convert from kg DM/ha to rising plate meter (RPM) clicks

Pre-grazing cover height in clicks	=	(2,650-500)/140	=	15.4 clicks
Post-grazing cover height in clicks	=	(1,500-500)/140	=	7.0 clicks

PASTURE ALLOCATION:

HERD DEMAND Is the pasture requirement for 12 or 24 hours?

Required per cow x number of cows = demand e.g. $18 \times 200 = 3600 \text{ kg DM}$

SUPPLY PER HECTARE

Pre-grazing yield – residual = supply e.g. 2800 – 1500 = 1300 kg DM/ha

AREA REQUIRED

Demand \div supply = area required e.g. 3600 \div 1300 = 2.8 ha/day

(Area x supply) \div number of cows = pasture available/cow

e.g. (2.8 x 1300) ÷ 200 = 18 kg DM

AREA ALLOCATION:

M² PER COW TO COWS PER HA A stride is approx. 1 m.

 $10,000 \div m^2/cow = cows/ha e.g. 10,000 \div 140 = 71 cows/ha (1ha = 10,000 m^2)$

AREA REQUIRED BY HERD

Total cows \div cows/ha = area required e.g. 200 \div 71 = 2.8 ha

BREAK SIZE

187 m 2.8 ha (28,000 m²)

Area $(m^2) \div$ paddock width = required length for break

e.g. $(2.8 \times 10,000 = 28,000 \text{ m}^2) 28,000 \div 150 \text{ m} = 187 \text{ m}$

Collecting pasture growth data

Annual pasture growth can be farm (and paddock) specific. While relying on district average growth data (such as that published here) for feed budgeting is a good starting point, it's possible to obtain a good knowledge of your farm's pasture growth, and which paddocks contribute well and which contribute poorly to annual pasture yield on your own farm.

Pasture measurement

There are several ways to assess and measure pasture. Some of the common methods are calibrated eye assessment and manual measurement using the Rising Plate Meter (RPM), or an electronic meter or probe. Another approach is a sensor attached to a quad or ATV bike such as the C-Dax Pasture Meter (also known as the Rapid Pasture Meter).

What's required

- A farm map with the area (ha) of individual paddocks known.
- Regular pasture assessment (kg DM/ha) of each paddock throughout the year.
- Computer software that records each paddock's pasture mass assessment, grazing events, calculates pasture growth rates, feed wedges and average pasture cover.

The Rising Plate Meter (RPM) and C-Dax Pasture Meter

This approximates pasture mass and puts hard numbers (kg DM/ha) on the grazing management plan. They are designed to measure the height of ryegrass and clover pastures and provide a point of reference when several people are making pasture decisions. The height measurement is converted to kg DM/ha by established calibration equations.

THE RPM EQUATION:		
Changing clicks to kg	/ha	
Average compressed pasture height	(150 + 400	= kg DM/ha
Readings from RPM	the the multiplier + adder	= kg DM/ha
*The equation "average fit for most situations a understand (winter forr grass is growing the fas	mpressed height x 140 + makes the data produced a). Multiplier range is from t) to 185 (used in very dr	500" is the best d the easiest to m 115 (when y conditions of

Calibrated eye or visual pasture assessment

This can be as good as any current tool, but requires practice and calibration. Calibration can be achieved through DairyNZ discussion groups, regular farm walks with a farm consultant or the farm team, or through occasional comparison with a tool like the rising plate meter.

Considerations

	C-DAX	Calibrated eye (visual score)	
dvantages	A consistent way of measuring Measures height and con	g pasture height for reliable data. verts to kgDM via a formula.	Manage yield variation at a paddock level / assess pasture were ground is uneven
Ă	A tool anyone can u	se, easy to understand.	Assess pasture composition
	Can be used with software to transfer data to a computer	Some brands can save data for transfer to a computer	Assess different species
	CDAY	Dising Dista Matan	Calibustad and (viewal arous)
	U-DAX		
		tising rate meter	
SI	An approximation of pasture a residuals and with	vailable, allocation must be made with o observation that stock are grazing fo	n consideration to post-grazing r a sufficient time
iderations	An approximation of pasture a residuals and with Adverse environmental con	vailable, allocation must be made with observation that stock are grazing fo ditions will impact on accuracy	n consideration to post-grazing r a sufficient time Regular calibration to maintain accuracy
Considerations	An approximation of pasture a residuals and with Adverse environmental con Maintenance is critical to ensure	vailable, allocation must be made with observation that stock are grazing fo ditions will impact on accuracy accuracy and reliability of reading.	a consideration to post-grazing r a sufficient time Regular calibration to maintain accuracy Requires knowledge of how

Recording and decision support

Regular pasture assessment, which is well recorded (notebook, spreadsheet or in a suitable computer program) can provide valuable information. Aim for generating monthly pasture growth rates for your farm, based on the average of several (more than 2) assessments of growth rates during the month.

Regular pasture data can be used to calculate:

- annual farm growth rates
- individual paddock growth rates
- seasonal average pasture cover targets.

This information can be used to build a feed wedge, increase accuracy in feed budgeting and to assess paddocks for renewal or development.

There are a range of computer programs and software available through commercial suppliers aimed at helping make decisions from pasture data.

Pasture assessment tools						
C-Dax	c-dax.co.nz					
Electronic plate meter	jenquip.co.nz					
Electronic plate meter & P Plus software	platemeters.co.nz					
Electronic plate meter	tru-test.com					
LIC SPACE	lic.co.nz					
Pasture-io	Pasture.io					
Pasture management so	oftware					
Agrinet	agrinet.ie					
Farmax	farmax.co.nz					
FarmIQ	farmiq.co.nz					
Feedflo	feedflo.co.nz					
Hawkeye	hawkeye.farm					
Minda Land & Feed	lic.co.nz					
Pasture coach	pasturecoachnz.co.nz					

Average pasture growth for your district (kg DM/ha/day)

Data is based on averages over several years, and may include nitrogen fertiliser. The data should be viewed simply as a guide as it is not often based on more than several years' data.

Northland													
Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Awanui	42	30	23	34	44	34	43	45	58	70	55	53	
Okaihau	30	25	29	36	37	27	26	33	37	47	47	50	
Dargaville- NARF	37	35	29	32	34	37	30	41	52	64	62	53	
Tomarata	29	21	23	23	26	28	19	27	30	45	28	28	
Bay of Plenty													
Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Matata	47	40	35	36	41	25	14	31	43	70	64	55	
Otakiri	38	44	36	32	33	28	20	36	51	63	54	50	
Galatea	43	42	42	35	39	33	24	36	54	60	49	52	
Waikite Valley	38	32	21	23	24	15	9	20	40	54	66	56	
Waikato													
Sito						lum			Son	Oct	New	Doc	
SILC	Jan	Feb	Mar	Apr	iviay	Jun	Jul	Aug	sep	OCI	NOV	Dec	
Ngatea P3	Jan 32	Feb 21	Mar 19	Apr 29	41	38	Jul 32	Aug 39	зер 49	53	55	56	
Ngatea P3 Ruakura/Newstead	Jan 32 67	Feb 21 42	Mar 19 34	Apr 29 25	41 29	38 22	32 26	Aug 39 35	49 64	53 83	55 87	56 65	
Ngatea P3 Ruakura/Newstead Gordonton (peat)	Jan 32 67 42	Feb 21 42 25	Mar 19 34 20	Apr 29 25 27	41 29 32	38 22 26	Jul 32 26 18	Aug 39 35 33	49 64 57	53 83 74	55 87 61	56 65 65	
Ngatea P3 Ruakura/Newstead Gordonton (peat) Tokoroa	Jan 32 67 42 46	Feb 21 42 25 37	Mar 19 34 20 28	Apr 29 25 27 36	May 41 29 32 33	38 22 26 25	Jul 32 26 18 17	Aug 39 35 33 23	49 64 57 45	53 83 74 60	55 87 61 55	56 65 65 41	
Ngatea P3 Ruakura/Newstead Gordonton (peat) Tokoroa Matamata	Jan 32 67 42 46 39	Feb 21 42 25 37 28	Mar 19 34 20 28 28	Apr 29 25 27 36 39	May 41 29 32 33 37	38 22 26 25 31	Jul 32 26 18 17 24	Aug 39 35 33 23 38	49 64 57 45 61	53 83 74 60 72	NOV 55 87 61 55 60	56 65 65 41 56	
Ngatea P3 Ruakura/Newstead Gordonton (peat) Tokoroa Matamata Otorohanga	Jan 32 67 42 46 39 49	Feb 21 42 25 37 28 41	Mar 19 34 20 28 28 28 32	Apr 29 25 27 36 39 37	May 41 29 32 33 37 37	38 22 26 25 31 24	Jul 32 26 18 17 24 17	Aug 39 35 33 23 38 32	49 64 57 45 61 47	53 83 74 60 72 64	Nov 55 87 61 55 60 60	56 65 65 41 56 62	
Ngatea P3 Ruakura/Newstead Gordonton (peat) Tokoroa Matamata Otorohanga Taupo	Jan 32 67 42 46 39 49 61	Feb 21 42 25 37 28 41 52	Mar 19 34 20 28 28 28 32 51	Apr 29 25 27 36 39 37 35	May 41 29 32 33 37 37 32	Juli 38 22 26 25 31 24 15	Jul 32 26 18 17 24 17 18	Aug 39 35 33 23 38 32 14	 3ep 49 64 57 45 61 47 23 	53 83 74 60 72 64 69	Nov 55 87 61 55 60 60 36	56 65 65 41 56 62 40	
Ngatea P3 Ruakura/Newstead Gordonton (peat) Tokoroa Matamata Otorohanga Taupo Te Aroha	Jan 32 67 42 46 39 49 61 33	Feb 21 42 25 37 28 41 52 41	Mar 19 34 20 28 28 32 51 34	Apr 29 25 27 36 39 37 35 29	May 41 29 32 33 37 37 32 38	38 22 26 25 31 24 15 29	Jul 32 26 18 17 24 17 18 21	Aug 39 35 33 23 38 32 14 34	 3ep 49 64 57 45 61 47 23 50 	53 83 74 60 72 64 69 57	Nov 55 87 61 55 60 60 36 45	56 65 65 41 56 62 40 46	
Ngatea P3 Ruakura/Newstead Gordonton (peat) Tokoroa Matamata Otorohanga Taupo Te Aroha Te Awamutu	Jan 32 67 42 46 39 49 61 33 35	Feb 21 42 25 37 28 41 52 41 26	Mar 19 34 20 28 28 32 51 34 25	Apr 29 25 27 36 39 37 35 29 29	May 41 29 32 33 37 37 32 38 40	Juli 38 22 26 25 31 24 15 29 28	Jul 32 26 18 17 24 17 18 21 18	Aug 39 35 33 23 38 32 14 34	 49 64 57 45 61 47 23 50 56 	53 83 74 60 72 64 69 57 65	Nov 55 87 61 55 60 60 36 45 56	56 65 65 41 56 62 40 46 56	

t DM/ha	From	То	Notes
16.0	2010	2015	N use unknown
13.1	2012	2015	N use unknown
15.4	2008	2016	150 kg N/ha
10.0	2010	2014	N use unknown
t DM/ha	From	То	Notes
15.3	2010	2011	
14.5	2009	2014	
15.7	2009	2015	N Use unknown
12.1	2009	2015	N use unknown
t DM/ha	From	То	Notes
14.1	2013	2016	182 kg N/ha
17.7	1996	2017	175 kg N/ha
14.5	2003	2017	150 kgN/ha
14.3	2010	2013	N use unknown
15.8	2009	2015	N use unknown
15.4	2009	2015	N use unknown
15.0	2010	2012	N use unknown
13.8	2009	2015	N use unknown
14.5	2009	2015	N use unknown
15.1	2013	2015	N use unknown

Average pasture growth for your district (kg DM/ha/day)

Taranaki													
Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Hawera WTARS	51	41	27	27	26	22	20	31	51	67	68	67	
Stratford	53	40	38	39	25	13	9	19	49	65	62	57	
Waimate West	55	39	34	34	32	20	22	35	64	78	77	70	
Lower North Isla	nd												
Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Manawatu Sands	25	47	38	45	41	39	18	23	53	65	56	33	
Greytown (irrigated)	45	44	44	48	40	20	16	22	46	64	57	56	
Kaiwaiwai (dry)	31	17	18	38	36	29	24	25	33	55	66	51	
Massey University No1 Dairy	30	33	31	31	32	20	18	24	42	49	48	46	
Massey University No4 Dairy	31	39	27	34	38	20	12	22	25	39	41	47	
Taratahi (irrigated)	54	46	41	40	34	27	17	19	36	55	58	58	
South Island													
Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	
Culverden	67	50	70	48	38	8	9	18	47	71	67	73	
Oxford	72	58	51	43	28	21	8	17	39	65	68	61	
LUDF	80	82	75	55	32	17	15	28	48	79	85	90	
Lincoln University research farm	73	69	67	45	23	7	20	27	40	72	70	87	
P21 High N	•			•			-		•	-			
Lincoln University research farm	60	68	66	43	23	4	19	26	41	68	62	72	
P21 Low N	-			-			-		-	-			
Dunsandel	81	77	69	57	27	20	8	11	35	67	75	84	

t DM/ha	From	То	Notes
15.1	2008	2016	160-180 kgN/ha
14.2	1992	2016	141 kgN./ha
17.1	2001	2016	180-200 kgN/ha
t DM/ha	From	То	Notes
14.8	2011	2011	N use unknown
15.8	2010	2015	N use unknown
12.5	2013	2015	N use unknown
12.6	2010	2013	N use unknown
11.6	2010	2013	N use unknown
14.4	2012	2015	N use unknown
t DM/ha	From	То	Notes
20.0	2014	2016	265 kgN/ha
19.0	2014	2016	330 kgN/ha
21.4	2008	2015	Irrigated , more than 300 kgN/ha
17.6	2012	2015	309 kg N/ha calibrated RPM data
16.3	2012	2015	154 kgN/ha calibrated RPM data
21.7	2014	2016	280 kgN/ha

Average pasture growth for your district (kg DM/ha/day)

South Island												
Site	Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Pendarves	67	59	60	48	29	12	11	22	41	67	67	73
Ruapuna	71	71	62	64	38	10	5	9	37	67	76	77
St Andrews	83	74	70	59	30	17	14	13	49	73	82	76
Westport	47	44	55	49	28	17	7	13	39	60	62	49
Greymouth	53	46	39	50	38	15	8	17	33	45	57	57
Ikamatua	57	48	70	64	32	17	7	14	52	73	70	66
Kotuku	38	33	38	33	14	7	3	6	21	42	44	44
Kowhitirangi	35	41	42	37	16	6	5	11	28	46	50	38
Woodlands	45	49	45	34	14	7	4	9	21	42	64	51
Seaward Downs	40	44	47	38	16	7	4	13	35	53	51	42
Edendale	39	48	58	37	19	10	5	10	34	53	69	33
South Hillend	35	38	34	28	13	5	4	12	33	49	53	29
Wallacetown	51	50	50	42	21	9	7	17	41	60	68	55
Riversdale	26	25	24	17	10	2	1	9	24	43	45	22
Tapanui	38	39	36	26	13	4	5	13	28	50	50	34
Telford	48	41	41	31	23	10	3	12	28	46	50	45

- P3 Hauraki
- Northland Dairy Development Trust
- Graeme Pitman
- Wayne Reynolds
- Joe Clough
- BOP Focus on dairy

- DairyNZ Farmwatch
- DairyNZ Research
- DairyNZ (WTARS)
- Farmers, ie DairyNZ Farmwatch farmers

DairyNZ would like to thank all of the above that supplied data. The majority of this information results from regular whole farm measurements and calculating growth rates from difference in covers from one measurement to the next, excluding paddocks that were grazed between measurements.

t DM/ha	From	То	Notes
16.9	2007	2016	Irrigated, 225 kgN/ha
17.8	2014	2016	300 kgN/ha
19.4	2014	2016	288 kgN/ha
14.2	2008	2012	179 kgN/ha
14.9	2012	2015	N use unknown
17.2	2008	2012	286 kgN/ha
9.7	2008	2012	223 kgN/ha
10.6	2008	2012	120 kgN/ha
11.0	2007	2012	0 kg N/ha cage cut data
11.8	2007	2012	94 kg N/ha
13.3	2008	2015	N use unknown
10.1	2007	2012	132 kg N/ha
14.3	2007	2012	176 kg N/ha
7.6	2007	2012	6 kg N/ha
10.2	2007	2012	60 kg N/ha
11.5	2007	2012	136 kg N/ha

Choosing a ryegrass cultivar (variety)

Endophyte selection

Before selecting the cultivar select the endophyte that will give you protection from insects while not causing animal health problems. There are few areas in NZ that do not have to consider damage from one or more insects. As new endophytes are being released annually contact your seed expert or refer to Farmfacts 1-22 and 1-24.

Heading dates

Do not mix cultivars with different heading dates in a paddock. If seeking greater early spring pasture performance the best way is to look at the performance values for seasonal dry matter production for the cultivars.

Aftermath heading

Aftermath heading refers to continued seed head production after the main spring heading. Choose cultivars that have reduced aftermath heading for improved summer pasture quality and animal productivity.

Tetraploids and diploids

Tetraploids are more upright clover-friendly plants. Tetraploid ryegrasses are highly palatable, have been shown to improve milk production, tend to be grazed lower reducing litter levels and hence accumulation of facial eczema spores. Diploids produce more tillers and consequently are more persistent and tolerant of overgrazing than are tetraploids.

Winter productivity

Generally annual and Italian ryegrasses produce more dry matter in the winter and early spring than other ryegrasses. Annuals persist for 6-8 months; Italians can persist for one year in summer dry areas and up to three years in summer wet conditions.

Refer Farmfact 1-23 for features and examples of types of ryegrass cultivars.

Forage Value Index/Cultivar Selector Tool

DairyNZ, in collaboration with the New Zealand Plant Breeding and Research Association (NZPBRA) developed an evaluation tool 'Forage Value Index' for New Zealand dairy farmers to estimate the profit of short term and perennial ryegrass cultivars for their region.

The Cultivar Selector Tool and more information on the FVI are available at dairynz.co.nz/fvi.

Quality seed – endophyte viability

Certified Seed is recommended – seed produced under the NZ Seed Certification scheme that meets quality standards and is free of weed seeds. Germination, purity and endophyte certificates should be available, to check seed quality. The germination should be 90%+, seed purity 99%+, and perennial ryegrass with endophyte should be 70%+ endophyte. Endophyte viability deteriorates over time with some endophytes less viable than other. Seed that is stored must be cool stored. Do not plant ryegrass seed that is left-over from last year's sowing; use seed harvested in the year of sowing for best endophyte viability. When sowing new ryegrass seed always use treated seed to control insect attack on seedlings.

Ryegrass	Diploid	16-22 kg/ha	Rates are dependent on:
	Tetraploid	20-30 kg/ha	• a good consolidated seedbed
White clover	Bare	3-4 kg/ha	 seed is drilled evenly (tractor
	Coated	4-5 kg/ha	 drill has good depth control
Chicory – optional		1-2 kg/ha	• there is adequate moisture
Red clover – optional	Bare	3-4 kg/ha	after sowing
	Coated	4-5 kg/ha	

Pasture sowing rates for mixed pastures

Notes:

- Higher seeding rates are often recommended as a cover for poor seedbed preparation. High seeding rates do result in good coverage in early establishment and provide competition for weed species. However, high seeding rates also result in smaller, weaker individual plants that do not survive the first summer.
- Tetraploid ryegrass seed is significantly larger than diploid, so is sown at higher rates. Cultivars vary in seed size, so check with the seed company for recommended rate e.g. sowing rate for Bealey is 25-30 kg/ha as it twice the normal seed size.
- Coated clover seed generally has a 75% weight build-up of lime, so higher sowing rates are needed (coated clover seed costs less per kg).

Advantages of standard versus lower perennial ryegrass sowing rate

There is no 'correct' ryegrass seed sowing rate for New Zealand farms. Both a standard and lower perennial ryegrass sowing rate can work well, with the advantages of each outlined in the table below.

Standard sowing rate	Lower sowing rate
diploid 18-22 kg/ha; tetraploid 26-30 kg/ha (plus clover at 3-4 kg/ha)	diploid 12-16 kg/ha; tetraploid 20-24 kg/ha (plus clover at 3-4 kg/ha)
• Extra seed can help in adverse conditions (e.g. poor seed bed, poor drilling depth)	More space for clover estab- lishment

Lower seed cost

- Usually higher DM yield over first 1-3 grazings
- Lower weed content

Pasture: glossary of terms

Average pasture cover (APC)

Units are kg DM/ha. For most farms maintaining APC between 2000-2300 kg DM/ha is a good rule of thumb. Achieving the target average pasture cover (APC) on a farm at critical times is important for ensuring that the herd has sufficient high quality pasture to meet production targets. If APC is too low, cows will be underfed. If APC is too high, pasture quality and growth will decline and production will be reduced.

Balance date

Balance date is when pasture growth rate is expected to increase to meet pasture feed demand in early spring. Normally balance date is 50-60 days after the planned start of calving for spring calving herds.

Rotation length

Rotation length (days) = total farm area \div area grazed/day , area to graze = total area \div rotation length (days)

Feed wedge

A pasture feed wedge gives a visual picture of the current pasture situation on a farm by ranking the paddocks based on average pasture cover in a graph. By drawing a line between pre and post grazing targets it becomes a simple tool to make proactive pasture management decisions.

Tiller

Ryegrass plants are made up of several parts called tillers. Each tiller has a growing point from which new leaves are produced. The growing point is found at the base of the tiller, very close to the soil surface. Because of this it is rarely damaged during grazing, which allows the tiller to keep growing after grazing. Each tiller will have three live leaves and one or more dying leaves at any one time (see diagram below).

